

Environmental Product Declaration

Global GreenTagEPD Program: Compliant to EN15804+A2 2019

Verosol Australia Pty Ltd 804 Enviroscreen Blind Fabric Kiefte 18, 7151HZ Eibergen The Netherlands

Verosol

Mandatory Disclosures

vialitiatory Disclos					
EPD type	Cradle to grave A1 to C4 -	+ D			
EPD Number	VEL TR03 2023EP	Product			
Issue Date	10 April 2023	Image			
Valid Until	10 April 2028				
Demonstration o	of Verification				
PCR	Standard EN 15804+A2 2 PCR 2022 TEX V1 also a		duct Category Rules (PCR) [1] Sub		
☑ Internal	10 Apr 2023	CA Reviewed by Diresh	yn Jones, The Evah Institute nni Naiker Ecquate Pty Ltd Baggs, Global GreenTag Pty Ltd		
☑ External	Third Party Verifier ^a Mathilde Vlieg Malaika LCT 17 04 2023 a. Independent external verification of the declaration and data, mandatory for business-to-consumer communication according to ISO 14025:2010 [2].				
Communication	This EPD discloses poter business-to-business com		omes compliant with EN 15804 for		
Comparability	Construction product EF Different program EPDs r on the product category r	may not be comparable.	arable if not EN15804 compliant. Comparability is further dependent ed.		
Reliability	LCIA results are relative endpoints, exceeding of th		not predict impacts on category s or risks.		
Owner	This EPD is the property of	of the declared manufac	turer.		
Explanations	Further explanatory information is available at info@globalgreentag.com.or.by				
EPD Program Op	perator LCA	and EPD Producer	Declaration Owner		
Global GreenTag Pty Ltd		ate Pty Ltd	Verosol Australia Pty Ltd		
PO Box 311 Canr	ion Hill PO E	Box 123 Thirroul	21 Amour St Revesby		
QLD 4170 Austral	lia NSW	/ 2515 Australia	NSW 2212 Australia		
Phone: +61 (0)7 3	33 999 686 Phor	ne: +61 (0)7 5545 0998	Phone:1800 721 404		
http://www.global	greentag.com http:/	//www.evah.com.au	https://www.verosol.com.au		
0.07	0				

Program Description EPD Scope Cradle to grave A1 to C4 + D as defined by EN 15804 [1] The system boundary with nature includes material and energy acquisition, **System** boundary processing, manufacture, transport, installation, use plus waste arising to end of life. **Stages included** Operations A1 to D3 **Stages excluded** No operation was excluded but no flows arose in modules B4, B5, B6, B7 and C3. Information Figure 1 depicts all modules being declared including some with zero results. Any **Modules** module not declared (MND) does not indicate a zero result. Model Actual **Scenarios** Potential **Building Life Cycle Assessment** Supplementary Information **Stages** Use Benefit & load End-of-Life Product Construct Operation beyond system **Modules** Fabric A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 **Unit Operations** B7 C1 C2 C3 C4 D1 D2 D3 Aanufacture Resources Transport Energy use Transport Construct Refurbish Nater use Transport Recycling Maintain Replace Demolish Process Disposal Recovery Waste Repair Reuse Cradle to grave Use phases

Figure 1 EPD Life Cycle Modules Cradle to Grave

Data Sources

Primary Data	Data is from primary sources 2017 to 2022 including the manufacturer and suppliers' standards, logistics, technology, market share, management system in accordance with EN ISO 14044:2006, 4.3.2 [4]. All are physically allocated not economically allocated.
A1-A3 Stage inclusions	Operations include all known raw material acquisition, refining and processing plus scrap or material reuse from prior systems; electricity generated from all sources with extraction, refining & transport plus secondary fuel energy and recovery processes. Also, transport to factory gate; manufacture of inputs, ancillary material, product, packaging, maintenance, replacement plus flows leaving at end-of-waste boundary and fates of all flows at end of life
Variability	Significant differences of average LCIA results are declared.
Chemicals of Concern	Contains no substances in the European Chemicals Agency "Authorised or Candidate Lists of Substances of Very High Concern (SVHCs)".

Data Quality

Background data is sourced from the Evah 2023 LCI global database. Data cut-off & quality criteria complies with EN 15804 [1] The LCA used background data aged <10 years and quality parameters tabled below.

Background	Data Quality	Parameters and Uncertainty (U)				
Correlation	Metric σg	U ±0.01	U ±0.05	U ±0.10	U ±0.20	
Reliability	Reporting	Site Audit	Expert verify	Region	Sector	
	Sample	>66% trend	>25% trend	>10% batch	>5% batch	
Completion	Including	>50%	>25%	>10%	>5%	
completion	Cut-off	0.01%w/w	0.05%w/w	0.1%w/w	0.5%w/w	
Temporal	Data Age	<3 years	≤5 years	<7.5 years	<10 years	
Temporar	Duration	>3 years	<3 years	<2 years	1 year	
Technology	Typology	Actual	Comparable	In Class	Convention	
Geography	Focus	Process	Line	Plant	Corporate	
	Range	Continent	Nation	Plant	Line	
	Jurisdiction	Representation is Global. Africa, North America, Europe, Pacific Rim				

Product Information

This section provides data required to calculate assessment results factoring different mass and periods.

Brand Name & Code	804 Enviroscreen Blind Fabric
Range Names	Enviroscreen semi-transparent blind fabric
Factory warranty	5 years internal use only
Manufacturer,	Fabric weaving, cutting and dispatch: Colsman BV Germany.
address and site	Fabric coating and dyeing: Kiefte 18, 7151HZ Eibergen, The Netherlands.
representation	Fabric blind manufacture: 21 Amour St, Revesby NSW 2212, Australia.
Geographical Area	Use and disposal as for Australasia
Application	Window coverings maintain indoor comfort and clear views
Function in Building	To reduce heat, light, glare, UV rays and energy usage
Lifetime [5,6]	20 years Reference Service Life (RSL) [ISO 15686]
Declared unit	804 Enviroscreen 220 grams/m ² blind/kg in dry interiors of all buildings
Functional unit	20 years declared product use/kg cradle to grave and beyond the boundary

Product Components

This section summarises factory components, functions, source nation and % mass share. In product content listed below the % mass has a $\pm 5\%$ range and a confidence interval that is 90% certain to contain true population means at any time. Listing such 90 $\pm 5\%$ certainty considers normal resource acquisition, supply chain, sedimentation, seasonal, manufacturing and product colour variation over this EPD's 5-year validity period. This also allows for intellectual property protection whilst ensuring fullest possible transparency.

Function	Component	Source	Amount
Fabric	Primary Polyester	Germany	>95 <98
White Pigment	Titanium Dioxide	Europe	>2.0 <5.0
Fire Retarder	Organo Phosphate	Germany	>2.0 <2.5
Colour & Black	Mixed Dye	Spain	>1.0 <1.5
Coating	Polyurethane dispersion	The Netherlands	>0.6<0.7
Viscofier	Polyester Acrylic dispersion	Switzerland	>0.5<0.6
Biocide	Nano Silver	Global	>0.1<0.2
Packing			
Core	90% PCR Cardboard	Europe	>50 <55
Pallet & Crate	Reuseable wood	Europe	>15 <20
Dunnage Sac	90% PCR Polypropylene	Europe	>3.0 <4.0

Product Functional & Technical Performance Information

This section provides manufacturer specifications and additional information.

Specifications	www.verosolspecifications.co	<u>om.au/</u>	
Composition	Polyester Trevira CS	Coating	Non Metallised
Thickness	0.55mm ± 5%	Weight	220gsm ± 5%
Lightfastness	Excellent 5+	Width maximum	2400 ± 50mm
Durability	DIN EN ISO 105 B2: 6-7	Oeko-Tex Certified	
AS/NZS 3837-1998	Classification	International	Specification
Volatile Organic Compounds (VOC)	Specific Area Emission Rate <0.01mg/m²/hr	Emissions ASTM D5116	Free of Formaldehyde, VOCs, PVC & Halogens
	0	Ignitability Index	Range [0-20]
Flame Retardancy	0	Spread of flame Index	Range [0-10]
[AS/NZS 1530.3-	0	Heat evolved Index	Range [0-10]
1999]	1	Smoke developed Index	Range [0-10]

System Analysis Scope and Boundaries

Stages A1 to 3 model actual operations. Stage A4 to C4 are model scenarios.

Typical scenarios are assumed to forecast unit operations as described in the next section.

Figure 2. shows included processes in a cradle to grave system boundary to end of life fates reuse, recycling, or landfill grave beyond the boundary.

Figure 2. Product Process Flow Chart

Environmental Impact Terminology

Environmental impacts contributing to risks of social and ecological issues and collapse are tabled below with common names and remedies given for each indicator.

Global warming forcing Climate Change	Greenhouse gases absorb infra-red radiation. This heat reduces thermal energy differentials, from equator to poles, forcing ocean current and wind circulation to blend and regulate climate. Weakly blended "lumpier" weather has more frequent, extreme heat wave, fire-storm, cyclone, rain-storm, flood and blizzard events. Accumulation of carbon dioxide, natural gas methane, nitrous oxides and volatile organic compounds from burning fossil fuels causes global warming. Forest and wilderness growth absorbing air-borne carbon in biomass can drawdown such accumulation. Urgent renewable energy reliance is vital in time to avoid imminent tipping points and the worsening " <i>climate emergency</i> ".
Ozone layer depletion	Stratospheric ozone loss weakens the planet's solar shield so more shorter wavelength ultraviolet (UVB) light reaching earth damages plants and increases malignant melanoma and skin cancer in humans and animals. Chlorofluorocarbons, hydrochlorofluorocarbons (HCFC), chlorobromomethane, hydrobromofluorocarbons, carbon tetrachloride, methyl chloroform, methyl bromide and halon gas cause ozone layer loss. To repair the "ozone hole" reliance on ozone-safe refrigerants, aerosols and solvents is essential to avoid further its depletion and enable accumulation of naturally-formed ozone.
Acidification	Acidification reduces soil and waterway pH, impedes nitrogen fixation vital for plant growth and inhibits natural decomposition. It increases rates and incidence of fish kills, forest loss and deterioration of buildings and materials. Chief synthetic causes of " <i>acid rain</i> " are emissions of sulphur and nitrogen oxides, hydrochloric and hydrofluoric acids and ammonia from burning fossil fuels polluting precipitation of rain and snow world-wide.
Eutrophication of terrestrial, freshwater and marine life	Eutrophication from excessively high macronutrient levels added to natural waters promotes excessive plant growth that severely reduces oxygen, water and habitat security for aquatic and terrestrial organisms across related ecosystems. Chief synthetic cause of " <i>algal blooms</i> " is nitrogen (N, NOx, NH ₄) and phosphorus (P, PO ₄ ³⁻) in rain run-off over-fertilised land catchments.
Photochemical ozone creation	Tropospheric photochemical ozone, called " <i>summer smog</i> " near ground level, is created from natural and synthetic compounds in UV sunlight. Low concentration smog damages vegetation and crops. High concentration smog is hazardous to human health. Chief synthetic causes are nitrogen oxides, carbon monoxide and volatile organic compounds (VOC) pollutants. Avoiding reliance on dirtiest coal fuel and volatile chemicals has reduced smog incidence in many areas globally.
Depletion of minerals, metals & water	Abiotic depletion of finite mineral resources increases time, effort and money required to obtain more resources to the point of extinction of naturally viable reserves. This can limit access to available, valuable and scarce elements vital for human-life. The youth movement " <i>extinction rebellion</i> " calls on adults to secure climate, reserves and biodiversity for current and future generations.
Depletion of fossil fuel reserves	Abiotic depletion of resources by consuming finite oil, natural gas, coal and yellowcake fossil fuel reserves leaves current and future generations suffering limited available, accessible, plentiful, essential valuable as well as scarce raw material, medicinal, chemical, feedstock and fuel stock. Approaching " <i>peak oil</i> " acknowledged fossil fuel reserves are finite and the need for decision-makers to act to avoid market instability, insecurity and or oil and gas wars.

Scenarios for Modules

This section defines modelling scenarios stages A4 to D3 beyond actual operations in module A1 to A3.

A4 Transport to Site	Type specified	Amount	Type specified	Amount
Intercity road trucking	2t to 5t vans	220 km	85% Capacity	Full back load
Long distance road	25t semi-trailer	600 km	85% Capacity	Full back load
Continental freight rail	Diesel train	600 km	85% Capacity	Full back load
Global container	Factory to CBD	1,200km	85% Capacity	Full back load
Volume capacity (<1 to	Utilisation	1	Uncompressed	Un-nested

Module A5 stage modelling scenarios include freight to site, product and packaging scrap and its fate.

A5 Installation	Type specified	Amount	Type specified	Amount
Utilities used	Grid Power	0.0042M	Town water	Nil
Emissions	VOCs indoors	Nil	From landfill	All known
Waste on site	Scrap Trim	5%	Scrap Fate	Landfill
Collection	Council site	0.05 kg	Landfill route	50km no return
All packaging	As declared	kg	Energy	nil
Pack waste collection	Council site	0.0004k	Landfill route	50km no return
Pack scrap recycled	Council site	0.003kg	To Recycler	50km no return

Modules B1 Use of building fabric, B4 Replacement, B5 Refurbishment, B6 Operating Energy and B7 Operating Water each have zero flows. Scenarios for Building B2 and B3 are listed below.

B2 Maintenance	Туре	Amount	Туре	Amount
Maker's specified	URL declared	Specifie	Clean cycle	Annual
Vacuum cleaning energy	Annually	0.007M	Power mix	National grid
B3 Repair	Damaged	5%	Maker's	As per website
New Product	As	5%	Freight to site	5% A5
Scrap	Fate landfill	0.025kg	Recyling	0.025kg
Energy input & source	No excess	Nil	Packaging	5% A5

Module C3 Waste Treatment has zero flows. End of Life scenarios C1, C2 and C4 are listed below.

C1 Demolition	Type specified	Amount	Туре	Amount
Operation	remove	5%	Collection	Separate
Collection process	In site waste	5%	Separate to	0
C2 Transport	25t truck road	50km	85% capacity	No back
C4 Disposal	Product specific	0.025kg	Collect	0.025kg
Typical Scenario	Damaged to	2.5%	All emissions	mass share
Recovery system	Recycling	2.5% kg	Not for energy	0.0 kg

Scenarios for modules D1Reuse, D2 Recovery and D3 Recycling are listed below.

D Beyond System Boundary						
D1 Reuse	Type specified	Amou	Туре	Amount		
Typical performance	Fit for purpose	95%	Reuse in	0.95kg		
D2 Recovery	Surface	95%	Clean in	0.95kg		
D3 Recycle	Take back	2.5%	Clean fibre	0.025kg		

Glossary of Terms, Methods and Units

Acronyms, methods and units of impact potentials plus inventory inputs and outputs, are defined below

Actonyms, methods and units of impact potentials plus inventory inputs and outputs, are defined below						
Impact Potentials	Acronym	Description of Methods	Units			
Climate Change biogenic	GWP bio	GWP biogenic [7]	kg CO _{2eq}			
Climate Change land use	GWP luluc	GWP land use & change [7]	kg CO _{2eq}			
Climate Change fossil	GWP ff	GWP fossil fuels [7]	kg CO _{2eq}			
Climate Change total	GWP t	Global Warming Potential [7]	kg CO _{2eq}			
Stratospheric Ozone Depletion	ODP	Stratospheric Ozone Loss [8]	kg CFC _{11eq}			
Photochemical Ozone Creation	POCP	Summer Smog [9]	kg NMOC _{eq}			
Acidification Potential	AP	Accumulated Exceedance [10]	mol H ⁺ eq			
Eutrophication Freshwater	EP fresh	Excess nutrients freshwater [11]	kg P _{eq}			
Eutrophication Marine	EP marine	Excess marine nutrients [11]	kg N _{eq}			
Eutrophication Terrestrial	EP land	Excess Terrestrial nutrients [11]	mol N _{eq}			
Mineral & Metal Depletion	ADP min	Abiotic Depletion minerals [12]	kg Sb _{eq}			
Fossil Fuel Depletion	ADP ff	Abiotic Depletion fossil fuel [13]	MJ ncv			
Water Depletion	WDP	Water Deprivation Scarcity [14, 15]	m^3 WDP eq			
Fresh Water Net	FW	Lake, river, well & town water	m ³			
Secondary Material	SM	Post-consumer recycled (PCR)	kg			
Secondary Renewable Fuel	RSF	PCR biomass burnt	MJ _{ncv}			
Primary Energy Renewable Material	PERM	Biomass retained material	MJ _{ncv}			
Primary Energy Renewable Not Feedstock	PERE	biomass fuels burnt	MJ _{ncv}			
Primary Energy Renewable Total	PERT	Biomass burnt + retained	MJ _{ncv}			
Secondary Non-renewable Fuel	NRSF	PCR fossil-fuels burnt	MJ _{ncv}			
Primary Energy Non-renewable Material	PENRM	Fossil feedstock retained	MJ _{ncv}			
Primary Energy Non-renewable Not Feedstock	PENRE	fossil-fuel used or burnt	MJ _{ncv}			
Primary Energy Non-renewable Total	PENRT	Fossil feedstock & fuel use	MJ _{ncv}			
Hazardous Waste Disposed	HWD	Reprocessed to contain risks	kg			
Non-hazardous Waste Disposed	NHWD	Municipal landfill facility waste	kg			
Radioactive Waste Disposed	RWD	Mostly ex nuclear power stations	kg			
Components For Reuse	CRU	Product scrap for reuse as is	kg			
Material For Recycling	MFR	Factory scrap to remanufacture	kg			
Material For Energy Recovery	MER	Factory scrap use as fuel	kg			
Exported Energy Electrical	EEE	Uncommon for building products	MJ ncv			
Exported Energy Thermal	EET	Uncommon for building products	MJ ncv			

Module A1 to A5 Results

Table 1 shows results from A1 Resources, A2 Transport, A3 Manufacture, A4 Transport to A5 Construction.

Table 1 A1-3 to A5 Impact & Inventory Results/Functional Unit					
Result	A1-3	A4	A5		
Climate Change biogenic	-0.86	-1.0E-06	-0.87		
Climate Change Iuluc	7.3E-05	2.8E-09	4.8E-06		
Climate Change fossil	17	0.17	0.94		
Climate Change total	16	0.17	0.90		
Stratospheric Ozone Depletion	2.0E-07	2.9E-13	1.6E-08		
Photochemical Ozone Creation	6.4E-02	9.3E-04	3.5E-03		
Acidification Potential	2.7E-02	9.0E-05	1.6E-03		
Eutrophication Freshwater	9.0E-06	2.1E-09	4.4E-07		
Eutrophication Marine	6.0E-03	1.7E-05	3.9E-04		
Eutrophication Terrestrial	1.8E-02	5.5E-05	1.0E-03		
Fossil Depletion	13	0.20	0.66		
Mineral and Metal Depletion	3.1E-03	1.1E-05	2.5E-04		
Water Scarcity Depletion	0.67	1.6E-05	0.03		
Net Fresh Water Use	4.1	1.0E-04	0.19		
Secondary Material	6.0	4.7E-06	0.25		
Secondary Renewable Fuel	5.5	0	5.5		
Primary Renewable Material	0.04	3.7E-03	-0.04		
Primary Energy Renewable Not Feedstock	15	5.1E-04	16		
Primary Energy Renewable Total	21	4.2E-03	21		
Secondary Non-renewable Fuel	1.4	1.1E-03	1.5		
Primary Energy Non-renewable Material	43	0.97	44		
Primary Non-renewable Energy Not Feedstock	192	1.6	195		
Primary Energy Non-renewable Total	235	2.6	239		
Hazardous Waste Disposed	9.2E-03	3.3E-04	4.2E-04		
Non-hazardous Waste Disposed	1.4	2.9E-03	0.12		
Radioactive Waste Disposed	3.3E-15	1.7E-31	2.8E-16		
Components For Reuse	0	0	0		
Material For Recycling	1.1	1.0E-05	6.0E-02		
Material For Energy Recovery	1.2E-03	3.4E-07	5.9E-05		
Exported Energy Electrical	0	0	0		
Exported Energy Thermal	0	0	0		

Module B1 to B7 Results

Table 2 shows results for building operations from B1 Use, B2 Maintain, B3 Repair, B4 Replace, B5 Refurbish, B6 Energy Use to B7 Water Use

Table 2 B1 to B7 Impact & Inventory Results/Functional Unit

Table 2 B1 to B7 impact & inventory Results/Ful	ictiona						
Result	B1	B2	B 3	B4	B5	B6	B7
Climate Change biogenic	0	-2.6E-04	-0.04	0	0	0	0
Climate Change luluc	0	4.1E-07	3.6E-06	0	0	0	0
Climate Change fossil	0	0.05	0.86	0	0	0	0
Climate Change total	0	4.5E-02	0.82	0	0	0	0
Stratospheric Ozone Depletion	0	2.1E-15	1.1E-08	0	0	0	0
Photochemical Ozone Creation	0	2.4E-04	3.3E-03	0	0	0	0
Acidification Potential	0	1.1E-04	1.4E-03	0	0	0	0
Eutrophication Freshwater	0	1.3E-11	4.5E-07	0	0	0	0
Eutrophication Marine	0	2.0E-05	3.0E-04	0	0	0	0
Eutrophication Terrestrial	0	1.5E-04	9.2E-04	0	0	0	0
Fossil Depletion	0	2.8E-02	0.66	0	0	0	0
Mineral and Metal Depletion	0	2.2E-10	1.6E-04	0	0	0	0
Water Scarcity Depletion	0	4.1E-07	0.03	0	0	0	0
Net Fresh Water Use	0	2.8E-09	0.21	0	0	0	0
Secondary Material	0	2.6E-04	0.30	0	0	0	0
Secondary Renewable Fuel	0	1.2E-03	0.28	0	0	0	0
Primary Renewable Material	0	5.2E-08	1.9E-03	0	0	0	0
Primary Energy Renewable Not Feedstock	0	2.7E-02	7.7E-01	0	0	0	0
Primary Energy Renewable Total	0	2.7E-02	1.0	0	0	0	0
Secondary Non-renewable Fuel	0	1.6E-08	0.07	0	0	0	0
Primary Energy Non-renewable Material	0	8.4E-03	2.2	0	0	0	0
Primary Non-renewable Energy Not Feedstock	0	0.50	9.8	0	0	0	0
Primary Energy Non-renewable Total	0	0.51	12	0	0	0	0
Hazardous Waste Disposed	0	8.0E-04	4.8E-04	0	0	0	0
Non-hazardous Waste Disposed	0	0.32	0.08	0	0	0	0
Radioactive Waste Disposed	0	8.3E-16	1.7E-16	0	0	0	0
Components For Reuse	0	0	0	0	0	0	0
Material For Recycling	0	6.0E-02	5.7E-02	0	0	0	0
Material For Energy Recovery	0	1.0E-04	6.1E-05	0	0	0	0
Exported Energy Electrical	0	0	0	0	0	0	0
Exported Energy Thermal	0	0	0	0	0	0	0

Module C1 to C4 Results

Table 3 shows End-of-Life results for C1 Demolish, C2 Transport, C3 Process waste and C4 Disposal.

Table 3 C1 to C4 Impact & Inventory Results/Functional Unit							
Result	C1	C2	C3	C4			
Climate Change biogenic	-1.1E-04	-1.0E-06	0	-5.6E-07			
Climate Change Iuluc	1.7E-07	1.4E-09	0	1.7E-10			
Climate Change fossil	1.9E-02	6.1E-03	0	1.2E-03			
Climate Change total	1.9E-02	6.1E-03	0	1.2E-03			
Stratospheric Ozone Depletion	9.0E-16	1.1E-13	0	1.8E-14			
Photochemical Ozone Creation	1.0E-04	6.0E-05	0	2.8E-05			
Acidification Potential	4.6E-05	5.1E-06	0	3.6E-06			
Eutrophication Freshwater	5.7E-12	3.1E-10	0	5.2E-11			
Eutrophication Marine	8.5E-06	9.5E-07	0	6.6E-07			
Eutrophication Terrestrial	6.2E-05	3.4E-06	0	1.3E-06			
Fossil Depletion	1.2E-02	7.5E-03	0	1.4E-03			
Mineral and Metal Depletion	9.5E-11	4.0E-06	0	8.0E-07			
Water Scarcity Depletion	8.5E-07	1.4E-06	0	1.2E-06			
Net Fresh Water Use	5.2E-06	8.7E-06	0	7.5E-06			
Secondary Material	2.2E-04	2.2E-06	0	3.0E-07			
Secondary Renewable Fuel	5.3E-04	2.2E-06	0	6.8E-07			
Primary Renewable Material	2.2E-08	0	0	2.6E-04			
Primary Energy Renewable Not Feedstock	1.1E-02	0	0	1.9E-05			
Primary Energy Renewable Total	1.1E-02	1.6E-03	0	2.8E-04			
Secondary Non-renewable Fuel	6.7E-09	2.1E-04	0	7.8E-05			
Primary Energy Non-renewable Material	3.6E-03	1.8E-03	0	7.2E-03			
Primary Non-renewable Energy Not Feedstock	0.21	4.8E-04	0	1.2E-02			
Primary Energy Non-renewable Total	0.22	3.7E-02	0	1.9E-02			
Hazardous Waste Disposed	1.0E-06	1.2E-05	0	2.4E-06			
Non-hazardous Waste Disposed	5.4E-05	9.7E-05	0	5.0E-02			
Radioactive Waste Disposed	9.2E-37	8.5E-32	0	1.1E-32			
Components For Reuse	0	0	0	0			
Material For Recycling	2.9E-04	4.6E-06	0	1.5E-01			
Material For Energy Recovery	2.1E-12	1.5E-07	0	2.4E-08			
Exported Energy Electrical	0	0	0	0			
Exported Energy Thermal	0	0	0	0			

Module D1 to D4 Results Beyond System Boundaries

Table 4 shows results for Beyond System Boundaries in phases D1 Reuse, D2 Recovery to D3 Recycle.

Table 4 D1 to D4 Impact & Inventory Results/Functional Unit

Table 4 D1 to D4 Impact & Inventory Results/Fun	ctional Unit		
Result	D1	D2	D3
Climate Change biogenic	-0.05	-1.8E-05	-1.3E-03
Climate Change Iuluc	2.0E-05	1.8E-09	5.2E-07
Climate Change fossil	4.6	2.5E-04	0.16
Climate Change total	4.3	2.3E-04	0.15
Stratospheric Ozone Depletion	5.8E-08	5.9E-13	2.3E-09
Photochemical Ozone Creation	1.7E-02	1.0E-06	7.2E-04
Acidification Potential	7.4E-03	4.4E-07	3.5E-04
Eutrophication Freshwater	2.4E-06	1.2E-10	6.8E-09
Eutrophication Marine	1.6E-03	7.7E-08	7.8E-05
Eutrophication Terrestrial	4.9E-03	5.2E-07	2.1E-04
Fossil Depletion	3.5	1.5E-04	1.2E-01
Mineral and Metal Depletion	8.6E-04	5.7E-08	4.1E-05
Water Scarcity Depletion	0.18	1.8E-05	1.6E-03
Net Fresh Water Use	1.1	1.1E-04	1.0E-02
Secondary Material	1.6	0	3.3E-02
Secondary Renewable Fuel	0.34	4.2E-05	1.5E-03
Primary Renewable Material	0.01	2.0E-04	6.0E-03
Primary Energy Renewable Not Feedstock	0.89	2.3E-04	0.20
Primary Energy Renewable Total	1.2	4.7E-04	0.21
Secondary Non-renewable Fuel	0.06	7.7E-06	1.5E-03
Primary Energy Non-renewable Material	2.7	3.2E-04	0.14
Primary Non-renewable Energy Not Feedstock	13	2.4E-03	1.9
Primary Energy Non-renewable Total	16	2.7E-03	2.0
Hazardous Waste Disposed	2.5E-03	1.9E-07	1.5E-04
Non-hazardous Waste Disposed	0.40	2.0E-05	1.4E-02
Radioactive Waste Disposed	9.2E-16	4.9E-21	4.3E-17
Components For Reuse		0	0
Material For Recycling	0.29	1.5E-05	5.9E-04
Material For Energy Recovery	3.2E-04	6.5E-09	3.3E-06
Exported Energy Electrical	0	0	0
Exported Energy Thermal	0	0	0

Verosol

Interpretation

This section discusses results /kg fabric blinds cradle to gate A1 to A3 as well as cradle to grave A 1 to D3. They include metalised PET 123 Earth and 802 EnviroScreen along with non-metalised 803 and 804 EnviroScreen versus metalised 202 and 205 SilverScreen 65% PVC and glass blind fabrics. Figure 3 shows results of Global Warming Potential (GWP) and fossil fuel depletion (MJ ncv) A1 to A3. It shows metalised French-made emulsion PVC coated and glass fabric GWP is highest.

Figure 3 A1-A3 GWP, ADP Fossil Fuel & freshwater & renewable energy/kg product

Figure 4 shows A1 to A3 results of acidification (AP) versus mineral and metal depletion (ABD M), marine eutrophication (EP_{Mar}) and terrestrial (EP_{Terra}) results /kg product sensitive to the majority primary polyester content. It also shows highest GWP sensitivity of all to the PVC Glass fabric which has higher results for all .

Figure 4 A1-A3 AP, EP marine & Terrestrial & ABD mineral & metal FF/kg product

Figure 5 shows GWP, fossil fuel depletion and renewable energy content /kg product A1 to D1. Most damage arose from A1-A3 with insignificant results from other phases, until D1 beyond the system boundary. There typical 95% is reused and 5% worn and or damaged fabric is replaced with new product.

Figure 5 A1-D3 GWP Vs GWP, ADP Fossil Fuel & renewable energy/kg

Reuse for 20 to 40 more years significantly reduces product impacts over a 60-year building life. Subsequently as most remain unchanged over built life no significant damages arise for phases A4 to C4.

References

- [1] EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations -Core rules for the product category of construction products.
- [2] GreenTag[™] 2021 EPD Program, Product Category Rules <u>https://www.globalgreentag.com/EPD</u>.
- [3] ISO 14025:2010 Environmental labels and declarations Type III environmental declarations -Principles and procedures.
- [4] ISO14044:2006 Environmental management Life cycle assessment Requirements and guidelines.
- [5] ISO 15686-2:2012 Buildings and constructed assets Service life planning Part 2: Service life prediction procedures.
- [6] ISO 15686-8:2008 Buildings and constructed assets Service-life planning Part 8: Reference service life and service-life estimation.
- [7] IPCC 2013, Global Warming Potential 100-year, IPCC Fifth Assessment Report Climate Change.
- [8] WMO 2014, Ozone Depletion Potentials for Steady-state, Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Report No. 55, 2014.
- [9] Van Zelm, R., Huijbregts, M., Hollander, H., Jaarsveld, H., Sauter, F., Struijs, J., Wijnen, H., Van de meent, D. 2008, European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment, J O Atmospheric Environment 42(3):441-453, as applied in ReCiPe LOTOS-EUROS. DOI: 10.1016/j.atmosenv.2007.09.072
- [10] Seppälä, J., Posch, M., Johansson, M. and Hettelingh, J-P. 2006 Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator, T Int J O LCA 11(6):403-416 Nov 2006 DOI:10.1065/lca2005.06.215
- [11] Posch, M., Seppälä, J., Hettelingh, J-P., and Johansson, M., (2008) The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA, Sept 2008, I J of Life Cycle Assessment 13(6):477-486., DOI:10.1007/s11367-008-0025-9
- [12] Struijs, J., Beusen, A., van Jaarsveld, H. & Huijbregts, M.A.J. (2009b). Aquatic Eutrophication. Ch 6 in: Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A., Struijs, J., Van Zelm, R. (2009). ReCiPe 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation factors, 1st Ed.
- [13] CML–IA V4.1 LCA methodology, 2002, October 2012, CML University of Leiden, Netherlands.
- [14] Guinée et al., 2002, and van Oers et al., 2002 CML LCA methodology 2002a, Institute of Environmental Sciences (CML), Faculty of Science, University of Leiden, Netherlands.
- [15] Boulay, A-M., Bare, J., Benini, L., Berger, M., Lathuilliere, M., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A., Ridoutt, B., Oki, T., Worbe, S., Pfister, S. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). I J of LCA. 23. 1-11. 10.1007/s11367-017-1333-8.

Bibliography

Ciroth A., Hildenbrand J., Zamagni A. & Foster C., 2015, Data Review Criteria. Annex A: LCI Dataset Review Criteria, 10.13140/RG.2.1.2383.4485 UN EP Life Cycle Initiative

EN ISO 14024:2000, Environmental labels and declarations - Type I environmental labelling -Principles and procedures (ISO 14024:1999).

EN ISO 14040:2006, Environmental management - Life cycle assessment - Principles and framework (ISO14040:2006).

EN 15643-1:2010, Sustainability of construction works - Sustainability assessment of buildings - Part 1: General framework.

EN 15643-2, Sustainability of construction works - Assessment of buildings - Part 2: Framework for the assessment of environmental performance.

EN 16449, Wood and wood-based products - Calculation of the biogenic carbon content of wood and conversion to carbon dioxide.

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products.

ISO 21931-1:2010, Sustainability in building construction - Framework for methods of assessment of the environmental performance of construction works - Part 1: Buildings.